Del Barco Lab

  • Home
    • News
    • Events
  • People
    • Current members
    • Past Members
    • Collaborators
    • Group Photos
  • Research
    • Current Projects
    • Past Projects
  • Publications
    • Research Articles
    • Reviews
    • Student Theses
  • Teaching
    • PHY2053
      • Syllabus PHY2053
      • Calendar PHY2053 Spring 2006
      • PHY2053 course notes
    • PHY2054
      • Syllabus PHY2054
      • Tentative Calendar for PHY2054 Fall 2005
      • PHY2054 course notes
    • PHY2048
      • Syllabus PHY2048
      • Tentative Calendar for PHY2048 Fall 2009
      • PHY2048 course notes
    • PHY2049
      • Syllabus PHY2049
      • PHY2049 course notes
      • Tentative Calendar for PHY2049
    • PHZ4044
      • Syllabus PHZ4044/5405
      • PHZ4044/5405 course notes
      • Calendar for PHZ4044/5405 Fall 2008
    • PHz3464-SL Nano II
      • PHz3464-SL Syllabus
      • PHz3464-SL course notes
      • PHY3464-SL Tentative Calendar
  • Education
    • PhYSICOS Summer Camp
    • Outreach
    • UG Nanoscience
    • Webassign Labs
You are here: Home / Physics Lab / Exploring the Marcus Regimes in a Molecular Double Quantum Dot

March 27, 2018 By delbarco

Exploring the Marcus Regimes in a Molecular Double Quantum Dot

Story by Allison Hurtado

An international research team, which includes University of Central Florida Professor Enrique del Barco and Christian A. Nijhuis of the National University of Singapore, has found a way to understand and manipulate the transition of charges in molecular junctions.

A molecular junction connects molecules to two metallic electrodes, such as gold. For electrons to flow through the junction they need to overcome a barrier. When temperature is increased, the electrons can jump over the barrier more easily.

Charge transfers dominate many chemical reactions, such as when iron rusts and turns brown. The iron loses electrons, causing rust. Iron is a metal, but the same applies to molecular reactions, known as electrochemistry. The science behind molecular charge transfer is well understood in the field of chemistry, and explained by the so-called Marcus Theory.

According to this theory, molecular reaction speeds can be tuned by increasing or decreasing temperature (known as Direct Marcus regime). However, under some circumstances, the reaction can be taken into the Inverted Marcus regime, where the reaction becomes insensitive to changes in temperature, and can jump without crossing a barrier.

Charge transfer processes are also becoming increasingly important in the emerging field of molecular electronics, where scientists aim for the smallest scale for electrical circuits, where the basic building blocks of modern electronics are based on molecules.

One example of this is molecular diodes (molecular devices capable of selecting the flow of charge current), which are of crucial importance as the basic building blocks of molecular circuitry – the future of powering our electronics.

The problem is that scientists have long seen molecular diodes behaving in either of the two Marcus regimes in ways they did not understand.

“We have seen similar molecules behaving in totally different ways, and very different molecules behaving very similarly without any apparent reason,” del Barco said. “This is highly surprising at a time where our knowledge of molecular junctions has substantially advanced. With two electrodes and a molecule in between, the charge does not flow; it jumps. But there are times where it shows a barrier, and other times it doesn’t, and this is what we’ve been working hard to figure out.”

Working closely with his colleague in Singapore, the team experimented with electric fields and temperature to see how charge flows through different molecular diodes.

Finally, they found a molecule that allowed them to explore the two Marcus regimes, by changing its temperature dependence at will.

“This is a breakthrough. If we think about this complex molecule as two different units coupled together, when the charge jumps into one unit, it generates an electric field on the other, and vice versa,” del Barco explained. “This internal electrical gating is proportional to the amount of charge in the molecule as a whole, which it increases with the voltage applied to the device, and makes the molecular diode to transit in between the two Marcus regimes. This is the first time we’ve seen such a transition in molecular electronics.”

Aside from the important implications of this discovery in the field of chemistry, it turns out that this molecule represents the first molecular example of a double quantum dot, with exciting potential in physics. This puts molecular systems in emerging technologies such as quantum information and computation in view.

Quantum dots behave like atoms, but have more accessible energy levels to conduct electricity, making quantum dots an ideal way to power computers and other electronic devices.

Silicon is what powers our smartphones and computers today. In the future, molecular electronics may offer complementary functionalities beyond what is possible with Silicon. Silicon has limitations, and cannot go as small as molecular electronics can. Del Barco says in the future, molecular technology will be used in conjunction with silicon, to create novel electronics applications.

Del Barco and Nijuhuis’ work, published in Nature Nanotechnology, will contribute to advancing the understanding of quantum technologies.

 

References:

Li Yuan, Lejia Wang, Alvar R. Garrigues, Li Jiang, Harshini Venkata Annadata, Marta Anguera Antonana, Enrique Barco & Christian A. Nijhuis
“Transition from direct to inverted charge transport Marcus regions in molecular junctions via molecular orbital gating”
Nat. Nanotechnology, doi:10.1038/s41565-018-0068-4 (2018)

Joshua Hihath
“Charge transport in the inverted Marcus region”
Nat. Nanotechnology News & Views, doi:10.1038/nnano.2017.123 (2018)

See more articles on this and similar topics.

Learn more on this general research topic.

Filed Under: Physics Lab

PHY2053

  • Calendar PHY2053 Spring 2006
  • PHY2053 course notes
  • Syllabus PHY2053

PHY2054

  • PHY2054 course notes
  • Syllabus PHY2054
  • Tentative Calendar for PHY2054 Fall 2005

PHY2048

  • PHY2048 course notes
  • Syllabus PHY2048
  • Tentative Calendar for PHY2048 Fall 2009

PHY2049

  • PHY2049 course notes
  • Syllabus PHY2049
  • Tentative Calendar for PHY2049

PHZ4044

  • Calendar for PHZ4044/5405 Fall 2008
  • PHZ4044/5405 course notes
  • Syllabus PHZ4044/5405

PHz3464-SL

  • PHz3464-SL Syllabus
  • PHz3464-SL course notes
  • PHY3464-SL Tentative Calendar

News

  • A Universal Logic Calculator in an Individual Molecule
  • Electric-field-driven dual-functional molecular switches in tunnel junctions
  • Subterahertz spin pumping from an insulating antiferromagnet
  • Time-resolved electron paramagnetic resonance spectroscopy at 50mK
  • A “high”temperature single-ion magnet

news Calendar

May 2025
M T W T F S S
 1234
567891011
12131415161718
19202122232425
262728293031  
« May    

Categories

  • Physics Lab

Archives

  • May 2022
  • March 2021
  • April 2020
  • April 2018
  • March 2018
  • July 2017
  • January 2017
  • July 2016
  • March 2016
  • November 2015
  • January 2015
  • December 2014
  • November 2013
  • November 2012
  • January 2012
  • January 2011

Contact

Enrique del Barco (Group leader)
Office: PS452
Phone: +1(407) 823-0755
Fax: +1(407) 823-5112
Email: delbarco [at] ucf.edu

Complete Contact

Recent News

  • A Universal Logic Calculator in an Individual Molecule
  • Electric-field-driven dual-functional molecular switches in tunnel junctions
  • Subterahertz spin pumping from an insulating antiferromagnet
  • Time-resolved electron paramagnetic resonance spectroscopy at 50mK
  • A “high”temperature single-ion magnet
  • Internal Group Files
  • UCF Physics Department
  • College of Sciences
  • American Physical Society
  • PRL News

Copyright © 2025 · del Barco Lab · Physics Department · UCF · Log in