Del Barco Lab

  • Home
    • News
    • Events
  • People
    • Current members
    • Past Members
    • Collaborators
    • Group Photos
  • Research
    • Current Projects
    • Past Projects
  • Publications
    • Research Articles
    • Reviews
    • Student Theses
  • Teaching
    • PHY2053
      • Syllabus PHY2053
      • Calendar PHY2053 Spring 2006
      • PHY2053 course notes
    • PHY2054
      • Syllabus PHY2054
      • Tentative Calendar for PHY2054 Fall 2005
      • PHY2054 course notes
    • PHY2048
      • Syllabus PHY2048
      • Tentative Calendar for PHY2048 Fall 2009
      • PHY2048 course notes
    • PHY2049
      • Syllabus PHY2049
      • PHY2049 course notes
      • Tentative Calendar for PHY2049
    • PHZ4044
      • Syllabus PHZ4044/5405
      • PHZ4044/5405 course notes
      • Calendar for PHZ4044/5405 Fall 2008
    • PHz3464-SL Nano II
      • PHz3464-SL Syllabus
      • PHz3464-SL course notes
      • PHY3464-SL Tentative Calendar
  • Education
    • PhYSICOS Summer Camp
    • Outreach
    • UG Nanoscience
    • Webassign Labs
You are here: Home / Physics Lab / Record Rectification Ratio in a Molecular Diode

July 21, 2017 By delbarco

Record Rectification Ratio in a Molecular Diode

Story by Mark Schlueb

An international research team that includes University of Central Florida Professor Enrique del Barco, Damien Thompson of the University of Limerick and Christian A. Nijhuis of the National University of Singapore has cracked an important limitation that for nearly 20 years has prevented the practical use of molecular diodes.

Electrical circuits are the basic building blocks of modern electronics, with components that control the flow of current. One of those components is the diode, which allows the flow of current in one direction while blocking the opposite flow.

The circuits that are ubiquitous in electronic devices the world over are silicon-based. But scientists have long been trying to duplicate the capabilities of silicon-based circuitry at the molecular level. Molecular electronics use single molecules or nanoscale collections of single molecules as electronic components. That would allow the unprecedented miniaturization of computers and other electronics.

Diodes are characterized by their rectification ratio, which is the rate between current for positive and negative electrical bias. The rectification ratios of commercial silicon-based diodes have rectification ratios between 105 and 108.

The higher the rectification rate, the more precise the control of current. So, for nearly 20 years without success, researchers have been trying to design molecular diodes that match or exceed that rectification ratio. A fundamental theoretical limitation of a single molecule had limited molecular diodes to rectification ratios no higher than 103 – far from the commercial values of silicon-based diodes.

Now, as reported in the scholarly journal Nature Nanotechnology, a team of scientists led by Christian A. Nijhuis of the National University of Singapore has demonstrated a way to reach a rectification ratio that had been thought a theoretical impossibility.

The researchers were able to form macroscale tunnel junctions based on a single layer of molecular diodes. The number of molecules conducting current in those junctions changes with the bias polarity, thus multiplying the intrinsic rectification ratio of an individual molecule for forward bias by three orders of magnitude. Their method overcame the 103 limitation, resulting in a record-high rectification ratio of 6.3 x 105.

“It surpassed that limit imposed by theory. Definitively, you now have a molecular diode that responds comparably to silicon-based diodes,” said del Barco, a physicist who interpreted the data and performed the theoretical modeling that explained how it works. “It moves something that was only science into a commercial possibility.”

The breakthrough isn’t likely to replace silicon diodes, but could eventually bring about the use of molecular diodes for applications that silicon diodes can’t handle. And molecular diodes, which can be produced in a chemistry lab, would be cheaper and easier to fabricate than standard diodes.

The research was funded through support from Singapore’s Ministry of Education, Science Foundation Ireland and the National Science Foundation.

 

References:

X. Chen, M. Roemer, L. Yuan, W. Du, D. Thompson, E. del Barco, and C. A. Nijhuis
“Large-Area Molecular Tunnel Junctions with Giant Rectification of Electrical Current”
Nat. Nanotechnology,  doi:10.1038/nnano.2017.110 (2017)

Nicolas Clement and Akira Fujiwara
“Molecular diodes: Breaking the Landauer limit”
Nat. Nanotechnology News & Views, doi:10.1038/nnano.2017.123 (2017)

See more articles on this and similar topics.

Learn more on this general research topic.

Filed Under: Physics Lab

PHY2053

  • Calendar PHY2053 Spring 2006
  • PHY2053 course notes
  • Syllabus PHY2053

PHY2054

  • PHY2054 course notes
  • Syllabus PHY2054
  • Tentative Calendar for PHY2054 Fall 2005

PHY2048

  • PHY2048 course notes
  • Syllabus PHY2048
  • Tentative Calendar for PHY2048 Fall 2009

PHY2049

  • PHY2049 course notes
  • Syllabus PHY2049
  • Tentative Calendar for PHY2049

PHZ4044

  • Calendar for PHZ4044/5405 Fall 2008
  • PHZ4044/5405 course notes
  • Syllabus PHZ4044/5405

PHz3464-SL

  • PHz3464-SL Syllabus
  • PHz3464-SL course notes
  • PHY3464-SL Tentative Calendar

News

  • A Universal Logic Calculator in an Individual Molecule
  • Electric-field-driven dual-functional molecular switches in tunnel junctions
  • Subterahertz spin pumping from an insulating antiferromagnet
  • Time-resolved electron paramagnetic resonance spectroscopy at 50mK
  • A “high”temperature single-ion magnet

news Calendar

May 2025
M T W T F S S
 1234
567891011
12131415161718
19202122232425
262728293031  
« May    

Categories

  • Physics Lab

Archives

  • May 2022
  • March 2021
  • April 2020
  • April 2018
  • March 2018
  • July 2017
  • January 2017
  • July 2016
  • March 2016
  • November 2015
  • January 2015
  • December 2014
  • November 2013
  • November 2012
  • January 2012
  • January 2011

Contact

Enrique del Barco (Group leader)
Office: PS452
Phone: +1(407) 823-0755
Fax: +1(407) 823-5112
Email: delbarco [at] ucf.edu

Complete Contact

Recent News

  • A Universal Logic Calculator in an Individual Molecule
  • Electric-field-driven dual-functional molecular switches in tunnel junctions
  • Subterahertz spin pumping from an insulating antiferromagnet
  • Time-resolved electron paramagnetic resonance spectroscopy at 50mK
  • A “high”temperature single-ion magnet
  • Internal Group Files
  • UCF Physics Department
  • College of Sciences
  • American Physical Society
  • PRL News

Copyright © 2025 · del Barco Lab · Physics Department · UCF · Log in